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In Arabidopsis, floral meristems appear on the flanks of the

inflorescence meristem. Their stereotypic development,

ultimately producing the four whorls of floral organs, is

essentially controlled by a network coordinating growth and

cell-fate determination. This network integrates hormonal

signals, transcriptional regulators, and mechanical constraints.

Mechanisms regulating floral meristem formation have been

studied at many different scales, from protein structure to

tissue modeling. In this paper, we review recent findings related

to the emergence of the floral meristem and floral fate

determination and examine how this field has been impacted

by recent technological developments.
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Introduction
Since the first genes controlling flower development in

Arabidopsis and snapdragon were cloned, enormous prog-

ress has been accomplished and regularly reviewed [1,2].

For this review, we chose to focus on the early stages of

floral meristem (FM) development in Arabidopsis,

highlighting recent advances in the field. We also exam-

ine how new technologies and methods have improved

our understanding of floral development.

Emergence of floral primordia
In Arabidopsis, the emergence of flowers on the flanks of

the shoot apical meristem (SAM) follows a precise pattern

(Figure 1). The reason for this positioning of flower pri-

mordia (phyllotaxis) can largely be explained by a localized

accumulation of auxin due to its polarized transport in the
www.sciencedirect.com
L1 layer through the PIN-FORMED1 (PIN1) efflux car-

rier [3]. This transient auxin peak releases the AUXIN

RESPONSE FACTOR5/MONOPTEROS (ARF5/MP)

from Aux/IAA repression [4], which is essential for FM

emergence as attested by the pin-shaped inflorescence of

the mp-S319 mutant [5] (Figure 2). The MP protein acts at

several levels: it first upregulates the MACCHI-BOU 4
(MAB4) family genes that control PIN basipetal relocaliza-

tion [6]; it also induces ARABIDOPSIS HISTIDINE
PHOSPHOTRANSFER PROTEIN6 (AHP6), a negative

regulator of cytokinin (CK) signaling. AHP6 diffuses to

neighboring initium positions where it inhibits meristem

initiation, thus reinforcing the auxin phyllotactic pattern

[7�,8]. Finally, MP directly induces the expression of the

FM identity gene, LEAFY (LFY) [5], which acts in concert

with AINTEGUMENTA (ANT), AINTEGUMENTA-LIKE6
(AIL6) and FILAMENTOUS FLOWER (FIL) in this pro-

cess [5,9��]. Feedback and feed-forward loops come into

action as ANT and AIL6 both induce LFY, while LFY in

turn reinforces auxin transport [10–12]. LFY also activates

REGULATOR OF AXILLARY MERISTEMS1 (RAX1 — a

Myb-like transcription factor (TF)), which, as its name

suggests, regulates meristem formation ([13] and refer-

ences therein) but also cytokinin signaling through inhibi-

tion of ARABIDOPSIS RESPONSE REGULATOR7
(ARR7) [13].

At the molecular level, MP was shown to recruit the SWI/

SNF ATPases SPLAYED (SYD) and BRAHMA (BRM)

to target loci where they increase chromatin accessibility

[9��]. Interestingly, constitutive expression of a fusion

protein composed of the MP DNA-binding domain and

BUSHI (a member of the SWI/SNF ATPase complex

that should allow the recruitment of SYD and BRM) is

sufficient to restore a wild-type inflorescence architecture

in mp mutants. The fusion protein is constitutively

expressed and lacks the PB1 domain mediating Aux/

IAA repression, therefore this result suggests the exis-

tence of an additional pathway which can pattern the

SAM to determine the site of floral emergence [9��]. This

pathway has, as yet, remained elusive, and no other

information on the components involved is available.

After reaching its peak level, auxin is channeled away

from the primordium. This is achieved by PIN1 reloca-

lization to the internal pole of the cell combined with the

local action of auxin-influx carriers. This combination

effectively creates an auxin sink in the inner tissues that

contributes to vascularization and phyllotaxis [6,14].
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Figure 1
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Schematic representation of flower development in Arabidopsis. The floral bud emerges on the flanks of the shoot apical meristem (stage 0). Bud

outgrowth during stages 1–3 allows a meristem-organizing center to be established at stage 2. During these early stages floral identity is acquired,

leading to definition of the floral organ whorls, starting with sepal outgrowth at stage 3. The meristem-organizing center finally disappears at stage

6, once all floral organs have been initiated and the pedicel has begun to expand. Hours indicate approximately the age of the flower at the end of

a given stage as defined in Ref. [63].
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Genetic network involved in floral meristem formation. In the nascent floral bud, the size of the primordium and the presence of a cytokinin-induced

signal combine to control the emergence of a stem-cell niche. This process is largely initiated by the auxin response factor, MP, which is activated

in response to a local auxin maximum after the release of Aux/IAA inhibition. Induction of MAB4 triggers relocalization of the PIN1 auxin efflux carrier

to channel auxin away from the primordium. By inducing ANT and AIL6, MP stimulates the cell cycle and cell wall softening to allow meristem

growth. Plasticity is reinforced by the effect of auxin on cell wall stiffness and isotropy. Cytokinin biosynthesis is triggered by LOG genes, and

probably by the action of MP through LFY and RAX1. MP and LFY also stimulate cytokinin signaling by inhibiting ARR7/15. Finally, MP induces

AHP6 which diffuses from the primordium to inhibit cytokinin signaling in surrounding areas, and thus control the emergence of new primordia.
Floral bud outgrowth
Once its position has been established, the floral meri-

stem enters its growth phase. This involves the ANT and

AIL6 [15,16] proteins, cell cycle regulators which also

control pectin dimethyl-esterification of SAM cell walls
Current Opinion in Plant Biology 2017, 35:15–22
[16], a process which is thought to facilitate organ out-

growth [17]. Cell-wall-forming enzymes play a specific

role in floral outgrowth, as indicated by their localized

expression patterns in the inflorescence [18]. Moreover, it

has also been shown that auxin can alter tissue plasticity
www.sciencedirect.com
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through its effect on microtubule reorganization and

dynamics, controlling both the stiffness and isotropy of

cell walls [19�].

CK establishes FM meristematic competence
After an initial growth stage, the FM acquires meriste-

matic features (Figure 2). Around stage 2, activation of the

CK signaling reporter pTCS [20] is closely followed by

the expression of WUSCHEL (WUS) and CLAVATA3
(CLV3) which mark the establishment of an organizing

center and a stem cell niche, respectively. Inter-regula-

tions of WUS and CLV3, CK and its receptors, and a

hypothetical diffusible signal from the L1, have been

integrated in a model recapitulating gene expression and

stem cell organization in the SAM in various conditions

[21,22��]. Remarkably, this model can also explain how

WUS and CLV3 expression are triggered in the early

flower, as soon as the primordium has attained a size

threshold [22��]. The central role played by CK in this

process is illustrated by a flurry of recent results: (i) MP

represses the negative regulators of the CK response,

ARR7 and 15 [23], while LFY represses ARR7 [13],

thereby locally increasing the CK response in FMs. In

support of this, ARR7/15 inhibition by amiRNA was also

shown to compensate for the loss of primordia initiation in

mp mutants [23]. (ii) RAX1 may also act on CK levels in

the SAM as overexpression of a CK biosynthesis enzyme

can compensate for loss of axillary meristems in rax1
mutants [24]. (iii) As described in the SAM network

model mentioned above, cytokinin biosynthesis is

thought to occur mainly in the L1, as suggested by the

expression of the LONELY GUY4 and 7 (LOG4/7) repor-

ters [22��]. Although few data are available regarding their

involvement in flower formation and their regulation,

LOG7 is specifically expressed in FM, while LOG4 is

found throughout the inflorescence, strongly hinting at

a role in primordia development [22��]. In addition to the

CK receptor AHK4 [21,22��,25], the HECATE family

(bHLH TFs) [26] and REVOLUTA (a HD-ZIPIII TF)

[27,28] were also shown to stimulate meristem activity

and are expressed in young flower primordia.

Floral fate acquisition
Acquisition of the floral fate is determined by a

gene regulatory network (Figure 3) based on the central

players LEAFY, the MADS-domain TF APETALA1

(AP1), CAULIFLOWER (CAL), AGAMOUS-LIKE 24

(AGL24), and SHORT VEGETATIVE PHASE (SVP).

Other MADS-domain TFs — SUPPRESSOR OF OVER-

EXPRESSION OF CONSTANS 1 (SOC1), FRUIT-

FULL (FUL), and XAANTAL2/AGL14 (XAL2) —
might be involved or at least can compensate for

AGL24 and SVP function in various mutant backgrounds

[29,30]. AP1 and LFY positively regulate each other and

share partially overlapping functions. Genome-wide anal-

yses revealed that these TFs act as activators and repres-

sors [31–33]. AP1 for example activates LFY but represses
www.sciencedirect.com
a myriad of other genes expressed in the SAM and in early

floral stages [32]. The analysis of common AP1 and LFY

targets identified multiple genes (including EUI-LIKE

P450 A1 (ELA1), genes involved in peptide signaling,

nitrate transport, UV-B signaling and carbohydrate homeo-

stasis) paving the way for future functional analysis [31,34].

Several gene network models describe the regulatory

relationships and predict steady states corresponding to

organ-identity gene expression in all four floral whorls

[30,35,36]. The mechanistic basis for whorl-specific acti-

vation of ABC floral organ homeotic genes through the

combined actions of TF and their cofactors remains un-

clear and this field has progressed relatively slowly. Recent

data suggest that ubiquitination could be involved as SVP

upregulates the WDR55 DCAP gene, which is involved in

restricting the expression pattern of AG and potentially

targets proteins for ubiquitination [37].

Repression of the inflorescence identity gene TERMI-
NAL FLOWER1 (TFL1) is also essential for proper floral

development [38] (Figure 3). This repression involves

LFY, AP1, CAL, SVP, a variety of remote regulatory

elements in the 30 region of TFL1 and DNA looping

[38,39]. LFY was initially thought to directly repress

TFL1, a hypothesis supported by ChIP-Seq assays show-

ing LFY binding to the 30 region of TFL1, mediated by

the LFY oligomerization domain [31,40�] (Figure 4).

However, when analyzing raw data from Ref. [31], we

realized that LFY-GR appears to induce TFL1 expression

in seedlings and it was recently found that deletion of a

region encompassing the LFY binding sites resulted in

reduced TFL1 expression in the stem [39]. Thus, LFY

could actually be a direct activator of TFL1 in the stem,

and its repressive capacity in the flower might be indirect,

through activation of AP1 and CAL. AP1 also suppresses

another inflorescence trait, the production of axillary buds

which grow in the axil of first-whorl organs in ap1 mutants.

To achieve this inhibition, AP1 represses LOG1, a gene

encoding a CK biosynthetic enzyme, and induces the

expression of the CYTOKININ OXIDASE/DEHY-

DROGENASE3 CK catabolic enzyme [41]. The resul-

tant reduction in CK levels prevents the sepal axil from

acquiring meristematic competence [41].

It is interesting to note that meristem emergence and

floral fate acquisition may be coupled by the continuous

action of LFY, acting in these two processes throughout

flower development.

Impact of novel technologies on our
understanding of flower development
Floral development will only be understood once it can

be fully modeled. The formation of flowers is a robust

process, indicating that founder-cells interpret informa-

tion they possess (genome and other molecules inherited

from cell division) as well as external cues (such as

hormonal cues or mechanical constraints imposed by their
Current Opinion in Plant Biology 2017, 35:15–22
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Figure 3
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Genetic network involved in floral identity. Inflorescence and floral

identity are mutually exclusive statuses in the nascent meristem. In the

young floral meristem, expression of LFY induces the AP1 and

indirectly CAL MADS-box genes. These three genes work together

with other MADS-box genes, SVP and AGL24, to specify the floral

identity. A feed-forward regulatory loop between LFY and AP1

stabilizes the floral identity. At this stage, the inflorescence identity

gene, TFL1, is repressed — mostly by AP1 and other MADS-domain

TFs. As discussed in the text, repression of TFL1 by LFY might be

only indirect through activation of AP1 and LFY might be a direct

activator of TFL1 in the inflorescence stem. AP1 also inhibits cytokinin

biosynthesis through its effect on the LOG genes, thus preventing

meristem formation at the sepal axil.
neighbors) to determine their development. However, for

us it is extremely difficult to understand the rules that

these cells so easily follow every time a flower is formed.

Over the last 30 years, genetics has extremely efficiently

identified a number of regulators affecting floral develop-

ment in a fairly specific way [1,2]. Here, we will analyze

how the advent of new technological developments has

generated new information which should help us to

understand and model this process at multiple levels:

atomic, genomic, cellular, and organ.

Structural advances
Although the technique is far from new, protein crystal-

lography has recently been applied to several key floral

regulators such as MP, LFY, and SEPALLATA3 (SEP3)

MADS-domain TF [40�,42–44] (Figure 4). Beyond the

satisfaction of obtaining a picture of these important

proteins, the results obtained offer the possibility to

understand how the atomic features of major proteins

(for example elements mediating DNA binding, dimer-

ization, tetramerization or oligo-merization) contribute to

their functions. In contrast to genetics, structural data
Current Opinion in Plant Biology 2017, 35:15–22
make targeted modifications of protein properties possi-

ble in the search to unravel new functions, as in the case of

LFY [13,40�]. Structural advances also revealed unex-

pected similarities in the overall organization of LFY,

ARF and MADS-domain TFs (Figure 4): they all harbor a

dimeric face-to-face DNA-binding domain associated

with a higher-order oligomerization domain. The shared

organization of these 3 TFs, which form an activation

cascade, might confer them common functional proper-

ties (such as the capacity to loop DNA, to bind closed

chromatin, or to interact with chromatin remodelers SYD

and BRM). These properties could never have been

inferred from their primary amino-acid sequences

[9��,40�,42,44,45].

Impact of genome-wide techniques
When applied to floral development, Next-Generation

Sequencing (NGS) based genome-wide studies (describ-

ing gene expression, TF binding, chromatin compaction,

histone marks, nucleosome positioning or 3D genome

architecture) hold great promise as they can be used to

infer general rules, thus extending beyond the bounds of

individual case-studies. These types of study also repre-

sent important data collections that can easily be reused

by the broader community. Genome browsers can be

utilized as ‘NGS microscopes’ to help generate hypothe-

ses for genome-wide testing. The diversity of the floral

cell types present in the inflorescence is a clear hindrance

to genome-wide studies, but several technical advances

have made it possible to sort tissues or cells [46,47], even

if more specific promoters are needed to dissect floral

meristems over both space and time.

In some cases, large-scale studies identified new actors

(such as with AHP6 or ELA1) which could then be

investigated by classical genetics techniques [7,34]. In

others, they highlighted novel or understudied features:

genes involved in pathogen defense are overrepresented

in the genes expressed in the epidermis [46]; this group of

genes is shut off by LFY and ANT/AIL6 [16,31]; expres-

sion of cell cycle genes displays a burst during the floral

transition [48]. One of the most fascinating questions that

can be addressed through genome-wide analysis is the

target-specificity of MADS-domain TF complexes. This

specificity was elegantly analyzed for SVP and FUL, and

their roles in regulating common or specific target genes

was identified [49]. However, for organ-identity MADS-

domain TF tetramers, ChIP-Seq data suggest that they

bind to similar genomic regions ([1] and references there-

in), indicating that their specific capacity to trigger sepa-

rate developmental programs lies in elusive-sequence

specific — co-regulators that have yet to be identified.

Exhaustive proteomics-based studies of protein interac-

tions might help to identify these co-regulators [45,50].

A fertile area that will certainly be more exploited in the

future is the comparison of various types of genome-wide
www.sciencedirect.com
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Figure 4
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Structural models of complexes between transcription factors and DNA. (a) MONOPTEROS (MP) model based on the complex between ARF1 and

DNA (pdb 4LDX) and the MP PB1 oligomerization domain (4CHK). (b) LFY model based on the complex between LFY, DNA (2VY1) and the GbLFY

SAM oligomerization domain (4UDE). (c) MADS-domain TF model involving the MEF2 (1TQE) DBD and the SEP3 tetramerization domain (4OX0).

Arbitrarily-shaped linkers (narrow lines) have been added between domains for which the structures are known. The C-terminal domain of MADS-

domain TFs is not represented. The insets aim at showing the similarity between the three proteins that share a face-to-face dimeric DNA-binding

domain and another domain that allows higher-order complex formation (oligomer for LFY and MP and tetramer for MADS-domain TF) with the

potential to form DNA loops.
data. Two such analyses, from very different angles,

proposed that LFY and the MADS-domain TFs AP1

and SEP3 could act as pioneer TFs with the capacity

to bind closed chromatin regions allowing the subsequent

recruitment of other TFs [40�,51,52�]. This attractive

hypothesis remains to be confirmed, but is consistent

with earlier reports showing that some floral genes are

controlled by Polycomb Group proteins repression and

that their activation require chromatin remodelers such as

SYD and BRM [53]. The cross-talk between transcrip-

tional and chromatin regulation appears particularly

prominent during the early stages of flower development

[45,54,55].

Modeling regulatory networks
Built with information relating to key regulators and their

relationships, models of gene regulatory networks (GRN)

can be used to understand whether known relationships

explain gene expression patterns or morphogenesis, or if

additional actors or connections need to be identified.

Models are becoming increasingly complex [22��,30,36],

but there is still a gap between what can be modeled and

the wealth of information available from genome-wide

studies. Gene expression cannot yet be modeled based

only on genome sequences plus some information about

chromatin, but predictive tools are improving, in particu-

lar with regard to the location of TF binding sites [56,57].

A major challenge is to understand when TF binding

leads to gene regulation. New CRISPR-Cas9 tools which

can directly modify regulatory elements at their genomic

locations [58] will provide a novel means to test GRN
www.sciencedirect.com
models and better understand complex gene regulation

such as the control of TFL1’s expression [39].

Ultimately, GRN will have to be integrated into cellular

models such as those modeling growth and integrating

mechanical constraints [59–61]. Novel techniques such as

Atomic Force Microscopy or Fluorescence emission-Bril-

louin imaging are also being developed or adapted to

provide access to the mechanical properties of living cells

within developing tissues [62].

Conclusion
Over the last 30 years, genetic approaches have identi-

fied the main regulators of FM development. We must

now build multi-scale models that integrate other types

of information such as tissue mechanics, morphology,

hormone transport and signaling. Although they may

remain incomplete, these models will play an essential

role in the search to identify missing elements, incon-

sistencies or network behavior that cannot be simply

apprehended. While data on gene expression, cell

growth and mechanics will soon coexist in individual

models, in the future we hope they can be included in

multi-scale models bridging atomic and genomic reso-

lutions.
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